Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.

Identifieur interne : 000C94 ( Main/Exploration ); précédent : 000C93; suivant : 000C95

GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.

Auteurs : Jennifer J. Tate [États-Unis] ; Isabelle Georis [Belgique] ; Rajendra Rai [États-Unis] ; Fabienne Vierendeels [Belgique] ; Evelyne Dubois [Belgique] ; Terrance G. Cooper [États-Unis]

Source :

RBID : pubmed:26024867

Descripteurs français

English descriptors

Abstract

The TorC1 protein kinase complex is a central component in a eukaryotic cell's response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor-dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc(13) localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells' nitrogen environment.

DOI: 10.1534/g3.115.019307
PubMed: 26024867
PubMed Central: PMC4528319


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.</title>
<author>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Georis, Isabelle" sort="Georis, Isabelle" uniqKey="Georis I" first="Isabelle" last="Georis">Isabelle Georis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rai, Rajendra" sort="Rai, Rajendra" uniqKey="Rai R" first="Rajendra" last="Rai">Rajendra Rai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vierendeels, Fabienne" sort="Vierendeels, Fabienne" uniqKey="Vierendeels F" first="Fabienne" last="Vierendeels">Fabienne Vierendeels</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dubois, Evelyne" sort="Dubois, Evelyne" uniqKey="Dubois E" first="Evelyne" last="Dubois">Evelyne Dubois</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 tcooper@uthsc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:regionArea>
<wicri:noRegion>Memphis</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26024867</idno>
<idno type="pmid">26024867</idno>
<idno type="doi">10.1534/g3.115.019307</idno>
<idno type="pmc">PMC4528319</idno>
<idno type="wicri:Area/Main/Corpus">000C50</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C50</idno>
<idno type="wicri:Area/Main/Curation">000C50</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C50</idno>
<idno type="wicri:Area/Main/Exploration">000C50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.</title>
<author>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Georis, Isabelle" sort="Georis, Isabelle" uniqKey="Georis I" first="Isabelle" last="Georis">Isabelle Georis</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rai, Rajendra" sort="Rai, Rajendra" uniqKey="Rai R" first="Rajendra" last="Rai">Rajendra Rai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Vierendeels, Fabienne" sort="Vierendeels, Fabienne" uniqKey="Vierendeels F" first="Fabienne" last="Vierendeels">Fabienne Vierendeels</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dubois, Evelyne" sort="Dubois, Evelyne" uniqKey="Dubois E" first="Evelyne" last="Dubois">Evelyne Dubois</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070</wicri:regionArea>
<placeName>
<settlement type="city">Bruxelles</settlement>
<region nuts="2">Région de Bruxelles-Capitale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 tcooper@uthsc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:regionArea>
<wicri:noRegion>Memphis</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Nucleus (metabolism)</term>
<term>Cytoplasm (metabolism)</term>
<term>GATA Transcription Factors (metabolism)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Glutamine (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Monomeric GTP-Binding Proteins (genetics)</term>
<term>Monomeric GTP-Binding Proteins (metabolism)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Facteurs de transcription GATA (métabolisme)</term>
<term>Glutamine (métabolisme)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protéines G monomériques (génétique)</term>
<term>Protéines G monomériques (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Proteins</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>GATA Transcription Factors</term>
<term>Glutamine</term>
<term>Membrane Proteins</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Multiprotein Complexes</term>
<term>Nitrogen</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines G monomériques</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines membranaires</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytoplasm</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Complexes multiprotéiques</term>
<term>Cytoplasme</term>
<term>Facteurs de transcription GATA</term>
<term>Glutamine</term>
<term>Noyau de la cellule</term>
<term>Protéines G monomériques</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines membranaires</term>
<term>Saccharomyces cerevisiae</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genes, Reporter</term>
<term>Genotype</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Gènes rapporteurs</term>
<term>Génotype</term>
<term>Mutation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The TorC1 protein kinase complex is a central component in a eukaryotic cell's response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor-dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc(13) localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells' nitrogen environment. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26024867</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.</ArticleTitle>
<Pagination>
<MedlinePgn>1625-38</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.115.019307</ELocationID>
<Abstract>
<AbstractText>The TorC1 protein kinase complex is a central component in a eukaryotic cell's response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor-dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc(13) localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells' nitrogen environment. </AbstractText>
<CopyrightInformation>Copyright © 2015 Tate et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tate</LastName>
<ForeName>Jennifer J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Georis</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rai</LastName>
<ForeName>Rajendra</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vierendeels</LastName>
<ForeName>Fabienne</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dubois</LastName>
<ForeName>Evelyne</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cooper</LastName>
<ForeName>Terrance G</ForeName>
<Initials>TG</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 tcooper@uthsc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM035642</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM-35642</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050980">GATA Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C121263">GTR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C552591">Gse1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C121262">Gtr1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501979">MEH1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020559">Monomeric GTP-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050980" MajorTopicYN="N">GATA Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020559" MajorTopicYN="N">Monomeric GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ego1/3 complex</Keyword>
<Keyword MajorTopicYN="N">Gln3 localization</Keyword>
<Keyword MajorTopicYN="N">Gtr1/2 complex</Keyword>
<Keyword MajorTopicYN="N">Tor complex one (TORC1)</Keyword>
<Keyword MajorTopicYN="N">nitrogen catabolite repression (NCR)</Keyword>
<Keyword MajorTopicYN="N">nitrogen limitation</Keyword>
<Keyword MajorTopicYN="N">nitrogen starvation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26024867</ArticleId>
<ArticleId IdType="pii">g3.115.019307</ArticleId>
<ArticleId IdType="doi">10.1534/g3.115.019307</ArticleId>
<ArticleId IdType="pmc">PMC4528319</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biotechnol. 1999 Aug;12(1):35-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10554772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):32136-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11408486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Apr 26;293(1):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12054566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 May 15;290(1-2):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Oct 31;310(4):1175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14559239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14679193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 30;279(18):19294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14970238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1996 Mar 15;12(3):259-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8904338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 8;281(49):37980-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Jul;6(1):1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17618850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 20;105(20):7194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 23;284(4):2522-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 4;285(23):17880-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20378536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2011 Jan 21;404(3):859-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21184740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 30;286(52):44897-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):73-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2012 Dec 5;20(12):2151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23123112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 18;288(3):1841-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23184930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 25;288(4):2789-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23223232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 20;288(38):27243-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2014 Jun;3(3):271-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24644271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jul 4;289(27):18999-9018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24847055</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
<li>États-Unis</li>
</country>
<region>
<li>Région de Bruxelles-Capitale</li>
<li>Tennessee</li>
</region>
<settlement>
<li>Bruxelles</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
</region>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
<name sortKey="Rai, Rajendra" sort="Rai, Rajendra" uniqKey="Rai R" first="Rajendra" last="Rai">Rajendra Rai</name>
</country>
<country name="Belgique">
<region name="Région de Bruxelles-Capitale">
<name sortKey="Georis, Isabelle" sort="Georis, Isabelle" uniqKey="Georis I" first="Isabelle" last="Georis">Isabelle Georis</name>
</region>
<name sortKey="Dubois, Evelyne" sort="Dubois, Evelyne" uniqKey="Dubois E" first="Evelyne" last="Dubois">Evelyne Dubois</name>
<name sortKey="Vierendeels, Fabienne" sort="Vierendeels, Fabienne" uniqKey="Vierendeels F" first="Fabienne" last="Vierendeels">Fabienne Vierendeels</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26024867
   |texte=   GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26024867" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020